
1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Energy-efficient Query Processing
in Web Search Engines

Matteo Catena and Nicola Tonellotto

Abstract—Web search engines are composed by thousands of query processing nodes, i.e., servers dedicated to process user queries.
Such many servers consume a significant amount of energy, mostly accountable to their CPUs, but they are necessary to ensure low
latencies, since users expect sub-second response times (e.g., 500 ms). However, users can hardly notice response times that are faster
than their expectations. Hence, we propose the Predictive Energy Saving Online Scheduling Algorithm (PESOS) to select the most
appropriate CPU frequency to process a query on a per-core basis. PESOS aims at process queries by their deadlines, and leverage
high-level scheduling information to reduce the CPU energy consumption of a query processing node. PESOS bases its decision on
query efficiency predictors, estimating the processing volume and processing time of a query. We experimentally evaluate PESOS upon
the TREC ClueWeb09B collection and the MSN2006 query log. Results show that PESOS can reduce the CPU energy consumption
of a query processing node up to ∼48% compared to a system running at maximum CPU core frequency. PESOS outperforms also
the best state-of-the-art competitor with a ∼20% energy saving, while the competitor requires a fine parameter tuning and it may
incurs in uncontrollable latency violations.

Index Terms—Energy consumption, CPU Dynamic Voltage and Frequency Scaling, Web search engines.

F

1 Introduction

Web search engines continuously crawl and index an im-
mense number of Web pages to return fresh and relevant
results to the users’ queries. Users’ queries are processed
by query processing nodes, i.e., physical servers dedicated
to this task. Web search engines are typically composed by
thousands of these nodes, hosted in large datacenters which
also include infrastructures for telecommunication, thermal
cooling, fire suppression, power supply, etc [1]. This complex
infrastructure is necessary to have low tail latencies (e.g., 95-
th percentile) to guarantee that most users will receive results
in sub-second times (e.g., 500 ms), in line with their expec-
tations [2]. At the same time, such many servers consume a
significant amount of energy, hindering the profitability of
the search engines and raising environmental concerns. In
fact, datacenters can consume tens of megawatts of electric
power [1] and the related expenditure can exceed the original
investment cost for a datacenter [3]. Because of their energy
consumption, datacenters are responsible for the 14% of the
ICT sector carbon dioxide emissions [4], which are the main
cause of global warming. For this reason, governments are
promoting codes of conduct and best practices [5], [6] to
reduce the environmental impact of datacenters.

Since energy consumption has an important role on the
profitability and environmental impact of Web search engines,
improving their energy efficiency is an important aspect.
Noticeably, users can hardly notice response times that are
faster than their expectations [2]. Therefore, to reduce energy
consumption, Web search engines should answer queries no
faster than user expectations. In this work, we focus on

• M. Catena and N. Tonellotto are with the Information Science
and Technologies Institute “A. Faedo” of the National Research
Council of Italy, Pisa, Italy. M. Catena is also with the Gran
Sasso Science Institute, L’Aquila, Italy.
E-mails: m.catena@isti.cnr.it, n.tonellotto@isti.cnr.it.

Manuscript received April 19, 2005; revised August 26, 2015.

reducing the energy consumption of servers’ CPUs, which are
the most energy consuming components in search systems [1].
To this end, Dynamic Frequency and Voltage Scaling (DVFS)
technologies [7] can be exploited. DVFS technologies allow
to vary the frequency and voltage of the CPU cores of a
server, trading off performance (i.e., longer response times)
for lower energy consumptions. Several power management
policies leverage DVFS technologies to scale the frequency of
CPU cores accordingly to their utilization [8], [9]. However,
core utilization-based policies have no mean to impose a
required tail latency on a query processing node. As a result,
the query processing node can consume more energy than
necessary in providing query results faster than required, with
no benefit for the users.

In this work we propose the Predictive Energy Saving On-
line Scheduling algorithm (PESOS), which considers the tail
latency requirement of queries as an explicit parameter. Via
the DVFS technology, PESOS selects the most appropriate
CPU frequency to process a query on a per-core basis, so
that the CPU energy consumption is reduced while respecting
a required tail latency. The algorithm bases its decision on
query efficiency predictors rather than core utilization. Query
efficiency predictors are techniques to estimate the processing
time of a query before its processing. They have been proposed
to improve the performance of a search engine, for instance to
take decision about query scheduling [10] or query processing
parallelization [11], [12]. However, to the best of our knowl-
edge, query efficiency predictor have not been considered for
reducing the energy consumption of query processing nodes.

We build upon the approach described in [10] and propose
two novel query efficiency predictor techniques: one to esti-
mate the number of postings that must be scored to process a
query, and one to estimate the response time of a query under
a particular core frequency given the number of postings to
score. PESOS exploits these two predictors to determine which
is the lowest possible core frequency that can be used to pro-

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

cess a query, so that the CPU energy consumption is reduced
while satisfying the required tail latency. As predictors can be
inaccurate, in this work we also propose and investigate a way
to compensate prediction errors using the root mean square
error of the predictors.

We experimentally evaluate PESOS upon the TREC
ClueWeb09 corpus and the query stream from the MSN2006
query log. We compare the performance of our approach
with those of three baselines: perf [8], which always uses
the maximum CPU core frequency, power [8], which throttles
CPU core frequencies according to the core utilizations, and
cons [13], which performs frequency throttling according to
the query server utilization. PESOS, with predictors correc-
tion, is able to meet the tail latency requirements while re-
ducing the CPU energy consumption from ∼24% up to ∼44%
with respect to perf and up to ∼20% with respect to cons,
which however incurs in uncontrollable latency violations.
Moreover, the experiments show that energy consumption can
be further reduced by PESOS when prediction correction is
not used, but with higher tail latencies.

The rest of the paper is structured as follows: Section 2
provides background information about the energy consump-
tion of Web search engine datacenters, the query processing
activity, and the query efficiency predictors. Section 3 for-
mulates the problem of minimizing the energy consumption
of a query processing node while maximizing the number
of queries which meet their deadlines. Section 4 illustrates
our proposed solution to the problem, describes our query
efficiency predictors, and the PESOS algorithm. Section 5
illustrates our experimental setup while Section 6 analyzes
the obtained results. Related works are discussed in Section 7.
Finally, the paper concludes in Section 8.

2 Background
In this section we will discuss the energy-related issues in-
curred by Web search engines (Sec. 2.1). Then, we will explain
how query processing works and some techniques to reduce
query response times (Sec. 2.2). Finally, we will discuss about
query efficiency predictors, which we exploit to reduce the
energy consumption of a Web search engine while maintaining
low tail latencies (Sec. 2.3).

2.1 Web search engine and energy consumption
In the past, a large part of a datacenter energy consumption
was accounted to inefficiencies in its cooling and power supply
systems. However, Barroso et al. [1] report that modern
datacenters have largely reduced the energy wastage of those
infrastructures, leaving little room for further improvement.
On the contrary, opportunities exist to reduce the energy
consumption of the servers hosted in a datacenter. In par-
ticular, our work focuses on the CPU power management of
query processing nodes, since the CPUs dominate the energy
consumption of physical servers dedicated to search tasks. In
fact, CPUs can use up to 66% of the whole energy consumed
by a query processing node at peak utilization [1].

Modern CPUs usually expose two energy saving mecha-
nism, namely C-states and P-states. C-states represent CPU
cores idle states and they are typically managed by the
operating system [14]. C0 is the operative state in which a
CPU core can perform computing tasks. When idle periods

occur, i.e., when there are no computing tasks to perform, the
core can enter one of the other deeper C-states and become
inoperative. However, Web search engines process a large and
continuous stream of queries. As a result, query processing
nodes are rarely inactive and experience particularly short idle
times. Consequently, there are little opportunities to exploit
deep C-states, reducing the energy savings provided by the
C-states in a Web search engine system [15], [16].

When a CPU core is in the active C0 state, it can op-
erate at different frequencies (e.g., 800 MHz, 1.6 GHz, 2.1
GHz, . . .). This is possible thanks to the Dynamic Frequency
and Voltage Scaling (DVFS) technology [7] which permits to
adjust the frequency and voltage of a core to vary its perfor-
mance and power consumption. In fact, higher core frequen-
cies mean faster computations but higher power consumption.
Vice versa, lower frequencies lead to slower computations and
reduced power consumption. The various configurations of
voltage and frequency available to the CPU cores are mapped
to different P-states, and are managed by the operating
system. For instance, the intel pstate driver [8] controls
the P-states on Linux systems1 and can operate accordingly
to two different policies, namely perf and power. The perf
policy simply uses the highest frequency to process computing
tasks. Instead, power selects the frequency for a core accord-
ing to its utilization. When a core is highly utilized, power
selects an high frequency. Conversely, it will select a lower
frequency when the core is lowly utilized. However, Lo et.
al [15] argue that core utilization is a poor choice for managing
the cores frequencies of query processing nodes. In fact, the
authors report an increase of query response times when core
utilization-based policies are used in a Web search engine.
For such reason, Catena et al. [13] propose to control the
frequency of CPU cores based on the utilization of the query
processing node rather than on the utilization of the cores.
The utilization of a node is computed as the ratio between the
query arrival rate and service rate. Then, they propose the
cons policy which throttles the frequency of the CPU cores
when the utilization of the node is above or below certain
thresholds (e.g., 80% and 20%, respectively). The frequency is
selected so to produce a desirable utilization level (e.g., 70%).
Similarly, in our work we control the CPU cores frequencies of
a query processing node using information related to the query
processing activity rather than to the CPU cores utilization
(see Sec. 4). To this end, we build our approach on top of the
acpi cpufreq driver [9]. This driver allows applications to
directly manage the CPU cores frequency, instead of relying
on the operative systems.

2.2 Query processing and dynamic pruning
Web search engines continuously crawl a large amount of Web
pages. This collection of documents is then indexed to produce
an inverted index [17]. The inverted index is a data structure
that maps each term in the document collection to a posting
list, i.e., a list of postings which indicates the occurrence of a
term in a document. A posting contains at least the identifier
(i.e., a natural number) of the document where the term
appears and its term frequency, i.e., the number of occurrences
of the term in that particular document. The inverted index is

1. intel pstate is currently the default driver on Ubuntu distri-
butions

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

usually compressed [18] and kept in main memory to increase
the performance of the search engine [19].

When a query is submitted to a Web search engine, it is
dispatched to a query processing node. This retrieves a ranked
list of documents that are relevant for the query, i.e., the top
K documents relevant to a user query, sorted in decreasing
order of relevance score (e.g., by using the popular BM25
weighting model [20]). To generate the top K results list,
the processing node exhaustively traverses all the posting lists
relative to the query terms. This is computationally expensive,
since the inverted index can easily measure tens of gigabytes,
so dynamic pruning techniques are adopted [21], [22]. Such
techniques avoid to evaluate irrelevant documents, skipping
over portions of the posting lists. This reduces the response
time as the systems avoid to access and decompress portion of
the inverted index. At the same time, these dynamic pruning
techniques are safe-up-to-K, i.e., they produce the same topK
results list returned by an exhaustive traversal of the posting
lists. For such reasons, in this work we apply dynamic pruning
strategies to the processing of queries.

2.3 Query efficiency predictors
Query efficiency predictors (QEPs) are techniques that es-
timate the execution time of a query before it is actually
processed. Knowing in advance the execution time of queries
permits to improve the performance of a search engine. Most
QEPs exploit the characteristics of the query and the inverted
index to pre-compute features to be exploited to estimate the
query processing times. For instance, Macdonald et al. [10]
propose to use term-based features (e.g., the inverse docu-
ment frequency of the term, its maximum relevance score
among others) to predict the execution time of a query.
They exploit their QEPs to implement on-line algorithms to
schedule queries across processing node, in order to reduce the
average query waiting and completion times. The works [11],
[12], instead, address the problem to whether parallelize or
not the processing of a query. In fact, parallel processing
can reduce the execution time of long-running queries but
provides limited benefits when dealing with short-running
ones. Both the works propose QEPs to detect long-running
queries. The processing of the query is parallelized only if
their QEPs detect the query as a long-running one. Rather
then combining term-based features, Wu et al. [23] propose
to analytically model the query processing stages and to use
such model to predict the execution time of queries.

In our work, we modify the QEPs described in [10] to
develop our algorithm for reducing the energy consumption
of a processing node while maintaining low tail latencies.

3 Problem Formulation
In the following, we introduce the operative scenario of a
query processing node (Sec. 3.1), we formalize the general
minimum-energy scheduling problem and we shortly present
the state-of-the-art algorithm to solve it offline (Sec. 3.2), and
we discuss the issues of this offline algorithm in our scenario
(Sec. 3.3).

3.1 Operative scenario
A query processing node is a physical server composed by
several multi-core processors/CPUs with a shared memory

Query Processing Node

Query Server

Query Server

Index
Query
Router

Incoming
Queries

Fig. 1. The architecture of a query processing node.

which holds the inverted index. The inverted index can be
partitioned into shards and distributed across multiple query
processing nodes. In this work, we focus on reducing the CPU
energy consumption of single query processing nodes, inde-
pendently of the adopted partition strategy. In the following,
we assume that each query processing node holds an identical
replica of the inverted index [24].

A query server process is executed on top of each of the
CPU core of the processing node (see Figure 1). All query
servers access a shared inverted index held in main memory
to process queries. Each query server manages a queue, where
the incoming queries are stored. The first query in the queue is
processed as soon as the corresponding CPU core is idle. The
queued queries are processed following the first-come first-
served policy. The number of queries in a query server’s queue
represents the server load. Queries arrive to the processing
node as a stream S = {q1, . . . , qn}. When a query reaches
the processing node it is dispatched to a query server by a
query router. The query router dispatches an incoming query
to the least loaded query server, i.e., to the server with the
smallest number of enqueued queries. Alternatively, the query
processing node could have a single query queue and dispatch
queries from the queue to idle query servers. In this work, we
use a queue for each query servers since a single queue will not
permit to take local decisions about the CPU core frequency
to use for the relative query server. A similar queue-per-core
architecture is assumed in [25], to schedule jobs across CPU
cores to minimize the CPU energy consumption, and in [10]
to schedule queries across different query servers.

A query qi ∈ S is characterized by its arrival time ai, when
it “enters” the processing node at the query broker, and its
completion time ci > ai, when it “leaves” the processing node
after being processed by a query server. The query processing
node is required to process queries with a tail latency of τ ms
(e.g., 500 ms). Therefore, we impose that each query qi must
be processed within τ time units from its arrival time, i.e., it
has an absolute deadline di = ai + τ . If we assume negligible
the time required by the query broker to dispatch the query,
the completion time ci of qi is the sum of its arrival time, the
time the query spent in the queue and its processing time. A
query misses its deadline, i.e., ci > di, if it spends more than
τ time units in queue and being processed. In fact, a query
may have less than τ time units to be processed. At time t,
the time budget bi(t) of query qi indicates how much time
remains before qi misses its deadline. bi(t) is the difference
between its deadline and the time it is spending in the queue,
i.e. bi(t) = di−(t−ai). When a query exceeds its time budget,
the query processing node has two possible choices: 1) to early

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

terminate the query, returning an incomplete list of results,
or 2) to finish processing the query, delaying the processing of
other request, but returning a complete list of results. In this
work, we focus on the second option which does not degrade
the quality of the search results. We do not consider here the
time necessary to send the results to the users, as it involves
network latencies which do not depend on the search engine.

As seen in Section 2.1, a query server can process queries
at different speeds, depending to the CPU core operational
frequency. To reduce deadline violations, CPUs cores can
operate at their maximum processing frequency. In fact,
high frequencies lead to faster computations at the price of
high power consumption. Conversely, lower frequencies mean
slower computations, with lower power consumptions.

Since the number of queries received by a query processing
node along a day varies, we envision the possibility to dy-
namically change the CPU core frequencies of query servers
to the number of queries received per time unit. Our goal
is to maximize the number of queries that are processed
within their deadline, in order to obtain a tail latency close
to τ ms. At the same time, we want to minimize the energy
consumption of the processing node. In other words, for each
query qi we need to select the most appropriate frequency
f ∈ F for the CPU core associated to the server processing qi.

3.2 The minimum-energy scheduling problem
Consider the following scenario, where a single-core CPU
must execute a set J = {J1, . . . , Jn} of generic computing
jobs rather than queries. Jobs must be executed over a time
interval [t0, t1]. Each job Ji has an arrival time ai and an
arbitrary deadline di which are known a priori. Moreover,
each job Ji has a processing volume vi, i.e., how much work it
requires from the CPU, and jobs can be preempted. The CPU
can operate at any processing speed s ∈ R+ (in time units per
unit of work) and its power consumption is a convex function
of the processing speed, e.g., P (s) = sγ with γ > 1 [7].

Jobs in J must be scheduled on the CPU. A schedule is
a pair of functions S = (ψ, φ) denoting, respectively, the
processing speed and the job in execution, both at time t.
A schedule is feasible if each job in J is completed within its
deadline. The minimum-energy scheduling problem (MESP)
aims at finding a feasible schedule such that the total energy
consumption is minimized, i.e.,

arg min
S=(ψ,φ)

E(S) =
∫ t1

t0

P
(
ψ(t)

)
dt (1)

The MESP is similar to an offline version of our problem,
where jobs, corresponding to queries, are preemptable, and
processor speeds can assume any positive value.

The YDS algorithm [26] solves the MESP in polynomial
time. Consider an interval I = [z, z′] ⊆ [t0, t1] and the set of
jobs in that interval JI = {Ji ∈ J : [ai, di] ⊆ I}. The intensity
g(I) of interval I is the ratio between the amount of work
required by the jobs in JI and the length of the interval

g(I) = 1
z − z′

∑
Ji∈JI

vi (2)

A feasible schedule must use a processing speed s ≥ g(I)
during the interval I, or jobs will not meet their deadlines

J5 (v5 = 9)

0 1 2 3 4 5 6 7

J4 (v4 = 9)

J3 (v3 = 8)

J2 (v2 = 1)

J1 (v1 = 3)

J1 J2 J3 J4 J5 J3

s = 4 s = 4s = 2 s = 6

t

Fig. 2. An example of YDS scheduling: (top) input jobs, (bottom)
resulting optimal schedule with CPU speeds s.

if s < g(I). Moreover, P (g(I)) is the lowest possible power
consumption on the interval I, since P is a convex function.

Algorithm 1 illustrates the YDS algorithm, that optimally
solves the MESP in O(n3) [26], [27]. YDS works by analyzing
each possible time interval I included in [t0, t1]. Then, it finds
the critical interval I∗ that maximizes g(I). YDS schedules the
jobs in JI∗ using the earliest deadline first (EDF) policy [28]
and processing speed g(I∗). Then, if not preempted, the jobs
in JI∗ will terminate in ri = vi · g(I∗) time units since the
beginning of their execution. Jobs in JI∗ are then removed
from J . The interval I∗ as well is removed from [t0, t1], i.e., it
cannot be used to schedule jobs other than those in JI∗ . For
this reason, YDS updates the arrival times and deadlines of the
remaining jobs to be outside I∗. Finally, YDS repeatedly finds
a new critical interval for the remaining jobs, until all jobs
are eventually scheduled. Note that the MESP always admit
a feasible schedule, since arbitrary large amounts of work can
be performed in infinitesimal time when s→∞.

Algorithm 1: The YDS algorithm
Data: A set of jobs J = {j1, . . . , jn} to schedule in [t0, t1]
Result: A feasible schedule S for J minimizing E(S)
OYDS(J):

1 ψ ← {}
2 φ← {}
3 while J 6= {} do
4 Identify I∗ = [z, z′] and compute g(I∗)
5 Set processor speed to g(I∗) for jobs in JI∗ in ψ
6 Schedule jobs in JI∗ according to EDF in φ
7 Remove I∗ from [t0, t1]
8 Remove JI∗ from J
9 foreach Ji ∈ J do

10 if ai ∈ I∗ then
11 ai ← z′ // Update arrival times

12 if di ∈ I∗ then
13 di ← z // Update deadlines

14 return S = (ψ, φ)

Figure 2 shows an example for YDS. Input jobs are il-
lustrated in the upper part of the picture. The left end of
a box indicates the arrival time of the job, while the right
end indicates its deadline. Processing volumes for the jobs are
reported inside the relative boxes. The bottom part of the
picture illustrates the optimal solution provided by YDS. The
picture shows the order in which the jobs are scheduled, their
start and end time, and the processing speeds s used for each
job. Note that J3 is executed over two different time intervals,
as it is preempted to schedule J4 and J5, which have an higher
joint intensity.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

3.3 Issues with YDS
YDS finds an optimal solution for the MESP, but poses various
issues that make difficult to use it in a search engine to reduce
its energy consumption:

1) YDS is an offline algorithm to schedule generic computing
jobs and cannot be used to schedule online queries. In
fact, YDS input is the set of jobs to be scheduled in a
interval, with their arrival times and deadlines, that must
be known a priori. In contrast, query arrival times are not
known until query arrives. Moreover, YDS relies on EDF,
which contemplates job preemption. Context switch and
cache flushing cause time overheads with non-negligible
impacts on the query processing time. Therefore, preemp-
tion is unacceptable for search engines.

2) YDS requires to know in advance the processing volumes
of jobs. Conversely, we do not know how much work a
query will require before its completion.

3) YDS schedules job using processing speeds (defined as
units of work per time unit). The speed value is contin-
uous and unbounded (i.e., the speed can be indefinitely
large). However, the frequencies available to CPU cores
are generally discrete and bounded.

For such reasons, in the following Section we modify YDS
in order to exploit it in a search engine.

4 Problem Solution
YDS has several issues that make unfeasible to use it in a
search engine. In the following, we discuss:

1) an heuristic based on YDS which works in online scenarios
without job preemption (Sec. 4.1),

2) a methodology to estimate the processing volume of a
query (Sec. 4.2),

3) an algorithm to translate processing speeds into CPU
core frequencies (Sec. 4.3).

Eventually, we introduce and discuss our approach to select
the most appropriate CPU core frequency to process a query
in a search engine (Sec. 4.4).

4.1 On-line scheduling without preemption
Online YDS2 (OYDS) is an heuristic for the online version of
the MESP, proposed in [26]. In an online scenario, we are not
given a set of jobs over a fixed time interval, but the set of jobs
that must be processed by the CPU changes over time. Every
time t̂ a new job arrives, OYDS considers the newly arrived
job and all the jobs still to be (completely) processed, and
computes an optimal solution using YDS for this set of jobs,
assuming that all such jobs have the same arrival time t̂. As
YDS, OYDS guarantees that each job will be terminated by
its deadline. In fact, it can schedule any processing volume by
simply using an arbitrarily large processing speed s. On the
other hand, its energy consumption can be sub-optimal.

While OYDS is an heuristics for the online version of the
MESP, it still schedules jobs using the EDF policy which
contemplates job preemption. However, in our operative sce-
nario we deal with queries rather than generic computing
jobs. Preemption is unacceptable for search engines and a

2. In the original paper, OYDS is called Optimal Available (OA). In
this work, we will use OYDS for the sake of clarity.

query cannot be preempted once its processing has started.
Since all queries must be processed within the same relative
deadline τ , for any two queries qh and qk, such that ak > ah,
we have dk > dh, i.e., later queries have later deadlines. As
a consequence, EDF will always schedule firstly the earliest
query, without any preemption. This means that, under these
conditions, EDF coincides with the first-in first-out (FIFO)
scheduling policy. We will use OYDS as a base for build our
frequency selection algorithm, described in Section 4.4. In the
remaining of this work, then, we will stop discussing about
generic computing jobs but we will focus on the processing of
search engine queries.

4.2 Predicting processing volumes
The OYDS heuristic must know the processing volumes of
the queries to schedule. For this purpose, we propose to
use the number of scored posting during the processing of
query. Indeed, for queries with the same number of terms,
the number of scored postings correlates with their processing
times [10]. If exhaustive processing is performed, it is possible
to know a priori the number of scored postings, which is equal
to the sum of the posting lists lengths of the query terms.
However, when dynamic pruning is applied we do not know
in advance how many postings will be scored, since portions
of the posting lists could be skipped. Then, we need a way to
predict the number of scored posting for a query.

We use the query efficiency predictors (QEPs) described
in [10] but we modify them to predict the number of scored
postings for a query. This means that we learn a set Π of linear
functions πx(q) that, given a query q with x query terms,
estimate the number of scored postings.

We note that OYDS requires exact query processing vol-
umes. If the reported processing volumes are less than the
actual ones, the algorithm does not guarantee that all the
queries deadlines will be meet. QEPs are not precise, but
they give only an estimate on the number of scored postings.
For this reason, we add an offline validation phase after the
QEPs training. During the validation, we use the regressors
in Π to predict the number of scored posting for a validation
set of pre-processed queries. Then, we record the root mean
squared error (RMSE) for the predictions. In the online query
processing, we use the RMSE ρx of predictor πx to compensate
its errors, by adding ρx to the predicted number of scored
postings. In other words, our modified QEPs π̃x(q) will be

π̃x(q) = πx(q) + ρx. (3)

In this way, we will likely over-estimate the processing volume
of some queries, requiring higher processing speeds at the cost
of higher energy consumptions. However, we will miss less
deadlines, as we reduce the number of queries for which we
predict fewer scored postings lower than the actual ones.

4.3 Translating processing speeds into CPU frequencies
CPU cores can operate at frequencies f ∈ F , where F
is a discrete set of available frequencies (measured in Hz).
Nevertheless, OYDS assigns processing speeds (seconds per
unit of work) to queries. Therefore, we need to map processing
speeds to CPU core frequencies. To do so, for each frequency
f we train a single-variable linear predictor σfx(q), which
forecasts the processing time of a query q composed by x

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

terms at frequency f through the estimated number of its
scored postings:

σfx(q) = αfxπ̃x(q) + βfx , (4)

where αfx and βfx are the coefficients learned by the regressors.
Thus, we learn offline a new set Σ of single-variable linear
regressors σfx , one for each frequency f . Once again, we add
a validation phase after the training to build Σ, similarly to
approach described in Section 4.2. We compensate a predictor
error adding its RMSE (ρfx) computed over the validation
queries to the actual prediction, i.e.,

σ̃fx(q) = σfx(q) + ρfx. (5)

We can use Σ to translate processing speeds to CPU core
frequencies, as shown in Algorithm 2. When a query qi is
associated to a processing speed s by OYDS, we compute
its required processing time ri by multiplying the predicted
number of scored postings π̃x(qi) by s. Then, we check each
regressor σ̃fx(qi) in Π′ in ascending order of frequency f . If
the expected query processing time at frequency f is less than
ri, we use frequency f to process qi. If we are not able to
find a suitable frequency f , we use the maximum available
frequency.

Algorithm 2: The CPU core frequency selection algo-
rithm

Data: A query qi composed by x terms, and
the processing speed s assigned by OYDS to qi

Result: The core frequency f to use to process qi

SelectFrequency(qi, s):
1 ri ← π̃x(qi) · s
2 foreach regressor σ̃f

x in Σ, in ascending order of f do
3 rf

i ← σ̃f
x(qi)

4 if rf
i ≤ ri then

5 return f

6 return max
f∈F
{f}

As shown in Algorithm 2, a suitable frequency f among
the frequencies of the CPU cores for a query qi does not
always exists. For example, this happens when the query
server is overloaded with queries to process. However, we
can ignore this scenario by assuming that a query processing
node has a computing capacity that, at maximum frequency,
is sufficient to process its peak query volume. Moreover, a
suitable frequency for a query qi cannot be found if, at time
t, qi requires a processing time that is greater than its time
budget bi(t). In such cases, we use the maximum CPU core
frequency to minimize that query processing time.

4.4 Frequency selection algorithm for search engines
In this section, we describe PESOS (Predictive Energy Saving
Online Scheduling). PESOS is an algorithm to select the most
appropriate frequency to process a query in a search engine.
Our algorithm is based on OYDS, but exploits predictors
which can be inaccurate. Because of wrong predictions (see
Sec. 4.2 and Sec. 4.3), some queries will miss their deadline no
matter the selected CPU core frequency. Yet, this can happen
because either queries have low time budgets or they require
too much processing time. We call these late queries. Con-
versely, we call on time queries those that will be completely
processed by their deadline.

Given a query qi with deadline di and completion time ci,
we define its tardiness as Ti = max{0, di− ci}. As such, an on
time query will have 0 tardiness, while a late query will have
a tardiness given by the amount of time a query requires to
be completed exceeding its deadline. While missing a query
deadline is always undesirable, low tardiness values are still
better than higher ones. Therefore, we aim at minimizing the
tardiness of late queries, by reducing the time budget of on
time queries. Given a queue of queries Q sorted by arrival
time, we compute the total tardiness of the late queries in Q
when all queries are processed at maximum frequency. Then
we compute the shared tardiness H(Q) of the on time queries
in Q by dividing the total tardiness by the number of on time
queries in Q, and we reduce the on time queries’ deadlines
by H(Q). Hence, on time queries are required to finish their
processing earlier, but this will leave more time to late queries
and reduce their actual tardiness. Algorithm 3 recaps the steps
to compute the shared tardiness H(Q).

Algorithm 3: The algorithm to compute the shared
tardiness of a query queue

Data: The query queue Q and the current time t
Result: The shared tardiness quantity H(Q)
ComputeSharedTardiness(Q, t):

1 T ← 0 // Total tardiness
2 n← 0 // On time queries
3 f̄ ← max

f∈F
{f} // Maximum frequency

4 foreach query qi in Q do
5 bi ← τ − (t− ai) // Remaining budget
6 rf̄

i ← σ̃f̄
x(qi) // Max processing speed

7 if rf̄
i > bi then

8 T ← T + (rf̄
i − bi) // Late query

9 else
10 n← n+ 1 // On time query

11 return T/n

Algorithm 4 describes how PESOS sets the most appropri-
ate core frequency to process a query. The algorithm works
as follow. Assume q1 is the first query in the query queue Q
of a query server. At time t, query q1 begins being processed.
Initially, we check if q1 is going to meet its own deadline. If
the query is late, we set the core at its maximum frequency.
Otherwise, we compute the shared tardiness H(Q) of the
queued queries and we change the deadlines of all the queries
in Q accordingly, i.e., for all qi in Q, we set d̃i = di − H(Q).
In doing so, we should just reduce the time budgets of the
on time queries to leave more time to late queries. In fact,
reducing the time budget of late queries has no effect since
late queries will be in any case processed at maximum core
frequency. Nevertheless, we reduce all the time budget by
H(Q) such that, for each couple of queries qj , qk ∈ Q, if
dj ≥ dk then d̃j ≥ d̃k. This property ensures that queries will
be processed following the FIFO policy, avoiding preemption
(see Sec. 4.1). Then, we check if the query q1 is going to
miss its modified deadline. In such case, we set the core at
maximum frequency. On the contrary, we eventually run the
OYDS algorithm to select which core frequency to use. Note
that we need to compute just the core frequency for the query
q1. Then, we do not need to analyze each time interval in the
query queue Q. Instead, we will check only the time intervals
[t, d̃i] = [t, di −H(Q)] for all queries qi ∈ Q. If a query in the
queue is likely to miss its deadline, we use the maximum core

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

frequency to process q1 at maximum speed. Otherwise, once
we have identified the critical interval I∗ (see Section 3.2)
and its intensity g(I∗), we select the most appropriate core
frequency to process the first query q1 by using Algorithm 2.

Algorithm 4: The PESOS algorithm for setting the
most appropriate CPU core frequency to process a query

Data: The query queue Q and the current time t
Result: The CPU core frequency to use for processing the first

query in Q
PESOS(Q, t):

1 f̄ ← max
f∈F
{f} // Maximum frequency

2 q1 ← Q.head() // First query
3 if d1 < t then
4 return f̄

5 H(Q)← ComputeSharedTardiness(Q, t)
6 if d1 −H(Q) < t then
7 return f̄

8 g(I∗)← 0 // Maximum intensity
9 foreach query qi in Q do

10 if di −H(Q) < t then
11 return f̄

12 QI = {qj ∈ Q : dj ≤ di −H(q)}
13 V ←

∑
q∈QI

π̃x(q) // Volume

14 g(I)← V/(di −H(Q)− t) // Intensity
15 if g(I) > g(I∗) then
16 g(I∗) = g(I)

17 return SelectFrequency(q1, g(I∗))

PESOS is executed whenever a query server starts process-
ing a new query. When the query processing is completed, the
query is removed from the query queue Q. Also, PESOS is
executed at each new query arrival, to take into account the
increased workload in the query queue and to adjust the core
frequency for the query which is currently being executed.

PESOS runs in linear time. It computes the shared tar-
diness using Algorithm 3, which just need to traverse the
query queue. Then, the algorithm checks each interval [t, d̃i]
for all qi ∈ Q, i.e., it analyzes |Q| intervals. Eventually, it
translates a processing speed into a CPU core frequency using
Algorithm 2. Algorithm 2 needs to analyze at most |F | CPU
frequencies. In conclusion, the computational complexity of
PESOS is O(|Q|+ |F |).

5 Experimental Setup
In this section, we firstly describe the experimental setup
for the training and validation of our predictors (Sec. 5.1,
Sec. 5.2). Then, we illustrate the experimental setup we
adopt to measure the CPU energy consumption and the
tail latency of a query processing node using our approach
(Sec. 5.3). All the experiments are conducted using the
Terrier search engine [29]. The platform is hosted on a
dedicated server with 32 GB RAM. The operating system
is Ubuntu, with Linux kernel version 3.13.0-79-generic.
The machine is equipped with an Intel i7-4770K CPU, a
member of the Haswell product family. The CPU has 4
physical cores which expose 15 operational frequencies F =
{0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.1, 2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5}
GHz. The inverted index used in the experiments is obtained
by indexing the ClueWeb09 (Cat. B) document collection3

3. http://lemurproject.org/clueweb09/

which contains more than 50 millions of Web pages. On
each document, we remove stopwords and apply the Porter
stemmer to all of its terms. The inverted index stores
document identifiers and terms frequencies and it is kept in
main memory, compressed with Elias-Fano encoding [30]. For
the queries, we use the MSN 2006 query log4.

In our experiments, we process queries using two dynamic
pruning retrieval strategies: 1) MaxScore [22], and 2) WAND
dynamic pruning [21]. For each query, we retrieve the top
1,000 documents according to the BM25 ranking function.
The node operates with 4 query servers, i.e., processing
threads, which are pinned to different CPU physical cores and
share the same inverted index.

5.1 Training processing volume predictors
In this section, we adapt the query efficiency predictors
(QEPs) introduced in [10] to originally predict the response
times of a query. Instead, we modify these predictor to esti-
mate the number of scored postings for a query. We divide
queries into six query classes according to their number of
terms, i.e., the first class includes queries with one term, while
the last class includes queries with six or more terms.

To train and validate our predictors, we extract a number
of unique queries from the MSN 2006 query log. We use unique
queries to avoid any caching mechanism from the operating
system that could distort our measurements. For each query
class, we extract 10,000 unique queries from the MSN 2006
query log, generating a query set of 60,000 unique queries.

Before training the modified QEPs, we process each single
term in the query set as detailed in [10]. We treat single terms
as queries of length one. During the processing, we record
the ranking scores obtained by all the documents relative to
the terms, to obtain a set of 13 term-based features for each
query term. Then we aggregate these to generate query-based
features using three functions: maximum, variance and sum,
generating a feature set containing 39 query-based aggregated
features per query.

We then process the original queries in the query set to
record the number of scored postings. This value is indepen-
dent by the CPU frequency and we can use any f ∈ F . From
the execution of the query set, we collect a processing log
which contains the number of scored posting for each query in
the query set. We use this processing log in the training and
validation phase of the predictors.

To train our predictors, we split the feature set and the
processing log: 50% of the queries for training and 50% for
validation. We use the training set to learn the set of linear
regressors πx, one for each query class. Each regressors takes
in input the 39 query-based aggregated features from the
feature set, and estimates the number of postings scored in
the processing log5. Note that linear regressors can return
negative values for a set of input features. However, the
number of scored postings is always a positive quantity. If
a regressor returns a negative value, we set its prediction to
the minimum between the shortest posting list length for the
query terms and 1,000 (the number of retrieved document).

4. http://goo.gl/ZhtnBM
5. Predictions take approximately less than 0.2 ms on average. This

includes the time for computing query features, while term features
are computed offline and stored in main memory.

http://lemurproject.org/clueweb09/
http://goo.gl/ZhtnBM

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Similarly, a linear regressor may return a value that exceeds
the sum of the posting lists lengths for a query. Since this is
not possible in practice, in such cases we set the prediction to
the sum of the posting lists lengths.

Once we have trained the regressors on the training set, we
use the validation set to see how predictors perform (results
are reported in the Supplemental Material). We then use the
RMSE ρx computed in the validation phase to correct the
value of the predictors (as explained in Section 4.2). This
will provide more conservative predictions to use into OYDS.
The result of the training and validation phases is a set of
predictors Π = {π̃1, π̃2,, π̃6+}.

5.2 Training processing time predictors

OYDS produces processing speeds that need to be mapped
into CPU core frequencies. For this purpose, we process the
60,000 queries set described in Section 5.1 to collect the
number of scored postings and the processing times of each
query. From these data, we learn a set of single-variable linear
regressors σfx that estimate the processing time of a query
given the number of its scored postings.

The processing time of a query is influenced by the CPU
core frequency but also by the workload faced by the query
processing node. In fact, high workloads increase the con-
tention among the query servers (i.e., processing threads) for
the main memory and the processor caches. This contention
increases the time required to process a query. We want
our regressors to predict processing times that match high
workload conditions. This is a worst-case choice that will lead
to higher energy consumption when the query processing node
deals with low workloads. However, we expect to miss less
query deadlines when the query processing node faces high
query volumes. We process the 60,000 query set sending the to
the processing node at the rate of 100 queries per second since
this rate ensure than our node is constantly busy processing
queries, simulating an high query workload. We process the
query set 15 times, one for each frequency f ∈ F . We hence
obtain 15 different processing logs reporting the number of
scored postings and the processing time for each query in the
query set.

Again, we divide the queries into six classes (see Sec. 5.1).
For each query class and each frequency f , we learn a single-
variable linear regressor σfx . To learn these regressors, we split
each processing log for training and validation: 50% of the logs
are used for training the regressors, the remaining 50% is used
to validate them. We use the validation set to check how well
the predictors perform after the training phase, measuring
their RMSE ρfx and the coefficient of determination R2.

Results are reported in the Supplemental Material. As
expected, the mean processing times decrease by increasing
the CPU frequency. Moreover the processing times are lower
when using MaxScore rather than WAND. This confirms
the findings in [31], [32], [33], where MaxScore outperforms
WAND for memory-resident indexes.

As explained in Section 4.3, we use the RMSE Rfx com-
puted in the validation phase to compensate the predictors’
estimates. The result of the training and validation phases is
a set of predictors Σ = {σ̃f1 , σ̃

f
2 ,, σ̃

f
6+}.

5.3 Measuring energy consumption and tail latency
We now describe the experimental setup for measuring the
CPU energy consumption and the tail latency for processing
a stream of queries on a query processing node. We here
focus on the tail latency since it is assumed to be a better
performance indicator than the mean/median latency for Web
search engines [34]. In fact, measuring the tail latency, we
can affirm that most of the requests are served within the
measured time interval. We require that queries are processed
with a certain tail latency. We experiment with a required tail
latency of 500 ms and 1,000 ms. The first value represents
a scenario where we want to promptly answer the queries,
while the second represents the case where we are willing to
wait more time to obtain query results. In fact, search engine
users are likely to not notice response delays up to 500 ms,
while they are very likely to perceive delays higher than 1,000
ms [2]. In PESOS we can impose the tail latency constrain
setting τ = {500, 1, 000} ms, i.e., requiring that queries are
processed within τ ms since their arrival. We test different
latency requirements to observe if PESOS can produce energy
savings while meeting the required tail latency. The query
processing is performed using the MaxScore and the WAND
retrieval strategies, to understand how PESOS behaves when
different retrieval strategies are deployed. Also, we test PESOS
with predictors corrected using their RMSE (as discussed in
Sec. 4.2 and 4.3), and without any correction. We will refer to
the first configuration as time conservative (TC) and to the
second as energy conservative (EC). In the TC configuration,
we are likely to over-estimate the processing volume and time
of some queries, requiring higher core frequencies. However,
we also expect to miss less query deadlines hence producing
lower tail latencies. In the EC configuration, instead, we
use predictors without any correction which should lead to
lower core frequencies and produce higher energy savings.
Comparing the two configurations, we want to understand if
acceptable tail latencies are achievable even without predic-
tors correction.

To perform our measurements, we carry out two different
kinds of experiment. Firstly, we observe the behavior of PE-
SOS under a synthetic query workload. For this purpose, we
send a stream of 60,000 unique queries from the MSN2006 log
to the processing node. Table 1 shows the number of queries
for each query class, with an average of ∼3 terms per query.
This value reflects the average query length observable on the
original MSN2006 log. To test the robustness of PESOS, we
experiment with different query arrival rates, i.e., {5, 10, 15,
20, 25, 30, 35} query per second (QPS) sent to the processing
node6. The second kind of experiment aims to observe the
behavior of PESOS under a realistic query workload. For this,
we process 544,718 unique queries from the MSN2006 query
log following the actual query arrivals of the second day of
the query log. Table 1 reports the number of queries for each
query class, while Figure 3 show the number of query arrivals
during the day. For both query workloads, we process unique
queries to avoid caching mechanism that could compromise
the evaluation of the experiment results. Nevertheless, for
the realistic query workload we are still processing the same

6. Note that the τ and QPS values can be rescaled by considering
smaller inverted indexes, for instance when the index is partitioned
across multiple query processing nodes.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

0

500

1000

1500

2000

2500

3000

3500

4000

#
qu

er
y

ar
ri

va
ls

Fig. 3. Query arrivals for the second day of the MSN2006 query log,
aggregated every 5 minutes.

TABLE 1
Distribution of queries across the various query classes for the

synthetic and the realistic query sets

1 2 3 4 5 6+

Synthetic 5,644 17,871 18,913 10,828 4,331 2,413
Realistic 51,553 161,973 171,016 98,001 39,998 22,177

number of queries reported in the second day of the MSN2006
query log to reflect a realistic query traffic.

Finally, we compare the energy consumption and the
tail latency of PESOS against three baselines, namely perf,
power, and cons. perf and power are provided by the
intel pstate driver [8]. The perf policy simply uses the
highest core frequency to process queries and then race to an
idle state. The power policy, instead, selects the frequency
for a core according to its utilization. High frequencies are
selected when a core is highly utilized. Conversely, lower fre-
quencies are selected when a core is lowly utilized. Differently,
the cons policy [13] bases its decisions upon the utilization
of a query server rather than on the utilization of a CPU
core. The utilization of a query server is computed as the ratio
between the query arrival rate and service rate. The frequency
of a core is then throttled if the server utilization is above
80% or below 20%, to produce a desirable utilization of 70%.
The cons policy executes every 2 seconds. We select these
parameter settings to achieve the best energy savings while
maintaining acceptable latencies, reflecting those used in [13].

With these experiments we want to address the following
research questions:
• RQ1: Does PESOS meet the required tail latencies?
• RQ2: Does PESOS help reducing the CPU energy con-

sumption of a query processing node?
• RQ3: Is prediction correction necessary to achieve accept-

able tail latencies?
• RQ4: How does PESOS behave using different retrieval

strategies, with different prediction accuracies?
We measure the 95-th percentile tail latency of the pro-

cessing node to answer our first research question. The 95-th
percentile tail latency is used to measure the effects of power
management mechanism on the responsiveness of search sys-
tems in [15], [16]. To answer the second research question
we measure the energy consumption of the CPU using the
Mammut library7 which relies on the Intel Running Aver-

7. http://danieledesensi.github.io/mammut/

age Power Limit (RAPL) interface. The RAPL component
performs actual measurements of the energy consumption in
Haswell processors. Hackenberg et al. [35] show the reliability
of such measurements, and the RAPL interface is used in other
works to measure the energy consumption of CPUs [36], [37].
Finally, to address the third research question we compare
the performance of our approach with and without prediction
corrections. We compare the performance of PESOS with
MaxScore and WAND to answer the last research question.
All experiments are conducted using the query processing
node described at the beginning of this Section.

6 Results
In this Section we discuss the results of our experiments.
We firstly describe the results relatively to the experiments
conducted with synthetic query workloads. Then, we illustrate
the results obtained using the realistic query workload.

6.1 Synthetic query workload results
We begin by analyzing the behavior of perf and power. We
recall that perf always uses the maximum available CPU core
frequency, while power is an utilization-based policy which
throttles a CPU core frequency accordingly to its utilization.
Both perf and power, however, do not permit to impose
the required tail latency of a query processing node. From
Table 2 we can observe that, when MaxScore is deployed,
perf meets the 500 ms tail latency requirement up to 30 QPS,
while the 1,000 ms tail latency requirement is always satisfied.
When WAND is used, instead, perf satisfies the 500 ms tail
latency up to 20 QPS, and the 1,000 ms tail latency up to
30 QPS. We explain this difference by recalling that WAND
provides longer response times than MaxScore (see Table 2
in Supplemental Material). With respect to tail latencies, we
observe a similar behavior between perf and power. This is
expected since, as the query arrival rate increases, the CPU
cores utilization increases as well, leading power to select high
core frequencies and hence behaving like perf. In terms of
energy savings8, Table 3 shows little differences between the
two baselines. Some energy savings are provided by power at
low QPS, from ∼2% in the case of WAND up to ∼5% for
MaxScore, at the cost of higher tail latency. For high query
arrival rates, power can be even detrimental, increasing the
energy consumption of the system. We explain this behavior
with the longer query processing times and the overhead
introduced by the policy, i.e., the CPU cores spend more time
busy doing computations, hence consuming more energy.

Regarding the other baseline, we observe in Table 2 that
cons satisfies the 500 ms tail latency only for moderate QPS
(from 15 to 25) when MaxScore is deployed, and only for
20-25 QPS with WAND. Again, this is due to the better
performance of MaxScore over WAND. When considering a
tail latency of 1000 ms, we observe that cons meets the
latency requirement from 10 to 35 QPS with MaxScore and
from 10 to 30 QPS with WAND. In general, we can conclude
that cons produces latency violations when the query arrival
rate is particularly low or high. We explain this behavior by
recalling that cons requires to tune several parameters which

8. Energy consumption decreases as the query arrival rate in-
creases, since experiments take less time to complete.

http://danieledesensi.github.io/mammut/

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

drive its decisions about frequency scaling. In our experiments
we use a setting aimed to produce the best energy savings
and acceptable latencies. However, our results suggests that a
single parameter setting is not sufficient for cons to perform
well under a wide range of query arrival rates. With respect
to energy consumption, Table 3 shows that cons provides
substantial energy savings with respect to perf at low QPS
(up∼ 45% with Maxscore and∼ 40% with WAND). However,
when the query arrival rate increases, cons can consume more
energy. Again, we explain this behavior with the longer query
processing times and the overhead introduced by the policy.

We now discuss the results for PESOS when using τ = 500
ms and τ = 1, 000 ms. For the time conservative configuration,
Table 2 shows that PESOS satisfies the 500 ms tail latency
requirement from 5 to 20 QPS when using WAND and up
to 25 QPS when using MaxScore. For the 1,000 ms tail
latency requirement, in the time conservative configuration
PESOS meets the required latency up to 30 QPS for both
retrieval strategies. These results are similar to what reported
for the perf policy. Relatively to our first research question
(RQ1), we can state that PESOS is able to meet the required
tail latencies for the same query workloads sustainable by a
system which operates at maximum CPU core frequency.

In terms of energy savings, Table 3 shows that PESOS
markedly reduce the energy consumption of the query pro-
cessing node’s CPUs. In the time conservative configuration,
PESOS can reduce the energy consumption up to ∼25% when
using MaxScore and up to ∼12% when using WAND. We
explain the better results achieved with MaxScore with the
higher accuracy of its processing time predictors compared to
the ones for WAND (see Table 2 in Supplemental Material).
We also notice that energy savings diminish as the query ar-
rival rate increases, as there are less opportunities for PESOS
to use low core frequencies without violating query deadlines.
Relatively to our second research question (RQ2), the results
in Table 3 show that PESOS actually permits to reduce the
CPU energy consumption of a query processing node. In most
cases, these energy savings are higher than those provided by
the state-of-the-art power and cons policies. This indicates
that application-dependent information leveraged by PESOS,
such as the state of the query queues and the query efficiency
predictors, are a better input for managing the CPU cores
frequencies than the cores or query servers utilizations. Also,
an important role is played by the τ parameter, which permits
to set the required tail latencies rather than processing the
queries at maximum speed as in perf, which does not take
into account latency requirements.

We now analyze the performance of PESOS in the energy
conservative configuration, i.e., when we do not correct the
query efficiency predictors using their RMSE. Table 2 shows
that, for both retrieval strategies, PESOS misses the 500
ms tail latency requirement. This answer our third research
question (RQ3): predictors correction is necessary to meet
the latency requirements. However, we highlight that the
reported latency violations are limited: for the same QPS
values for which the time conservative configuration meets
the 500 ms tail latency requirement, the energy conservative
configurations violates the requirement by up to ∼8% with
WAND and up to ∼15% with MaxScore. Additionally, we no-
tice higher energy savings compared to the time conservative
configuration (see Table 3). When τ = 500 ms, the energy

conservative configuration reduces the energy consumption
of the CPU node by ∼29% in the case of WAND and by
∼34% in the case of MaxScore for low QPS. In Table 2 we
can observe that the 1,000 ms tail latency requirement is met
up to 30 QPS when MaxScore is applied, and up to 25 QPS
when WAND is used. This suggests that predictors correction
becomes less relevant as the latency requirement increases.
Remarkably, the energy conservative configuration basically
halves the energy consumption of the CPU node for 5 QPS
when τ = 1, 000 ms (see Table 3).

Finally, to answer our last research question (RQ4), we
compare the behavior of PESOS while deploying MaxScore
and WAND. In general, PESOS shows better results with
MaxScore. In fact, the tail latency requirements are met for
slightly higher QPS values compared to WAND. Also, PESOS
shows higher energy savings when the MaxScore retrieval
strategy is applied. We explain this behavior with the faster
response time provided by MaxScore and by the higher preci-
sion of its processing time predictors.

6.2 Realistic query workload results
Now we describe the results of the experiments conducted
processing the realistic query workload. In this subsection
we will not investigate research question RQ4 as for these
experiments we use only the MaxScore retrieval strategy,
which provided the best results in Section 6.1. Firstly, we will
analyze the performance of the three baselines. Then, we will
discuss the results obtained by PESOS in the time conserva-
tive configuration. Finally, we will study the performance of
PESOS in the energy conservative configuration.

Figure 4 reports the tail latencies of the tested approaches
during the day. As expected, perf provides lower latencies
than the other approaches. Unsurprisingly, perf exhibits also
the higher CPU energy consumption as it always uses the
maximum core frequency (see Tab. 4). In terms of tail latency,
power behaves similarly to perf during midday but exhibits
higher latencies at the beginning and at the end of the day.
This behavior is explained in Figure 5 (left). During midday,
the CPU cores are highly utilized due to the higher number
of query arrivals. In response to high core utilization, power
selects the maximum core frequency as in perf. During the
rest of the day, instead, the query arrivals decrease and the
CPU cores are less utilized. Therefore, power selects lower
core frequencies which explain longer latencies. For the same
reasons, power provides limited energy savings compared to
perf, reducing the CPU energy consumption by less than
4% as reported in Table 4. Figure 6 illustrate the energy
reductions of power with respect to perf during the day.
When power is applied, we can observe energy savings only at
the beginning and at the end of the day, when power selects
lower core frequencies as shown in Figure 5 (left). In these
periods, the CPU consumes ∼20% less energy with respect
to perf. However, during midday power does not provide
any energy saving. Again, this is due to the high utilizations
showed by the CPU cores during midday In this situation,
power selects the maximum core frequency, behaving like perf
and consuming the same amount of energy.

Table 4 shows that cons can reduce by ∼27% the CPU en-
ergy consumption with respect to perf. As shown in Figure 6,
energy consumption can be reduced by ∼45% during periods

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 2
MaxScore (left) and WAND (right) tail latencies (95th-tile, in ms) of baselines, time conservative (TC), and energy conservative (EC) PESOS for

different synthetic query workload (QPS)

QPS
Baselines

PESOS
τ = 500 ms τ = 1, 000 ms

perf power cons TC EC TC EC
MaxScore

5 342 360 1,019 446 573 809 980
10 344 344 667 431 536 759 894
15 341 346 442 428 509 703 833
20 362 364 393 415 489 685 832
25 402 400 411 446 500 701 842
30 479 498 515 522 563 835 948
35 657 715 687 725 731 1,174 1,287

QPS
Baselines

PESOS
τ = 500 ms τ = 1, 000 ms

perf power cons TC EC TC EC
WAND

5 378 399 1,060 399 538 649 896
10 380 382 714 389 510 615 813
15 391 396 519 401 490 586 757
20 437 436 457 439 502 585 765
25 527 537 546 534 569 627 793
30 821 835 787 821 867 884 1,035
35 2,696 3,091 2,831 3,211 3,585 2,667 3,318

TABLE 3
Energy consumption (KJ) of baselines, time conservative (TC), and energy conservative (EC) PESOS, with energy savings w.r.t. perf for

different synthetic query workload (QPS)

QPS
Baselines

PESOS
τ = 500 ms τ = 1, 000 ms

perf power cons TC EC TC EC
MaxScore

5 92.79 87.78 (-5.40%) 51.06 (-44.97%) 69.95 (-24.62%) 61.34 (-33.89%) 47.43 (-48.89%) 42.56 (-54.13%)
10 83.51 81.35 (-2.58%) 58.32 (-30.16%) 65.38 (-21.71%) 57.30 (-31.39%) 47.36 (-43.29%) 44.81 (-46.34%)
15 77.78 77.54 (-0.31%) 74.33 (-4.44%) 64.35 (-17.26%) 57.26 (-26.37%) 50.22 (-35.43%) 48.74 (-37.34%)
20 75.37 75.34 (-0.05%) 75.01 (-0.48%) 62.21 (-17.46%) 59.42 (-21.17%) 52.35 (-30.55%) 52.65 (-30.15%)
25 72.75 73.09 (0.47%) 74.23 (2.03%) 65.77 (-9.59%) 62.57 (-13.99%) 56.46 (-22.39%) 56.74 (-22.01%)
30 70.74 71.43 (0.98%) 72.61 (2.64%) 66.50 (-6.00%) 65.06 (-8.04%) 62.42 (-11.76%) 65.01 (-8.10%)
35 69.78 71.51 (2.48%) 71.53 (2.51%) 68.46 (-1.89%) 66.89 (-4.14%) 70.02 (0.35%) 68.70 (-1.55%)

WAND
5 106.49 104.28 (-2.07%) 64.11 (-39.80%) 93.83 (-11.89%) 76.03 (-28.60%) 67.38 (-36.72%) 56.48 (-46.96%)
10 96.62 95.25 (-1.42%) 74.13 (-23.28%) 88.01 (-8.91%) 74.66 (-22.73%) 67.11 (-30.54%) 60.19 (-37.70%)
15 91.55 91.98 (0.46%) 87.27 (-4.66%) 84.56 (-7.64%) 75.80 (-17.21%) 68.39 (-25.30%) 64.27 (-29.81%)
20 89.34 89.31 (-0.04%) 89.27 (-0.08%) 83.49 (-6.55%) 78.44 (-12.20%) 72.11 (-19.29%) 70.72 (-20.84%)
25 85.81 86.59 (0.91%) 87.17 (1.58%) 83.69 (-2.47%) 79.32 (-7.56%) 75.96 (-11.48%) 73.92 (-13.86%)
30 85.27 86.38 (1.31%) 85.85 (0.68%) 84.37 (-1.05%) 82.03 (-3.80%) 80.82 (-5.22%) 80.03 (-6.14%)
35 84.58 84.86 (0.34%) 85.72 (1.35%) 84.70 (0.15%) 84.88 (0.36%) 82.72 (-2.20%) 84.15 (-0.50%)

of low query workloads. However, such energy savings come at
the price of high latencies (see Fig. 4). Indeed, cons exhibits
tail latencies that are above 500 ms during midday, and above
1,000 ms during the rest of the day. In fact, cons relies on low
core frequencies most of the time (see Fig. 5 (middle)), hence
producing long query response times. It starts selecting higher
core frequency only during midday, when the query servers
utilizations increases due to the higher query workload. In
fact, we can notice in Figure 4 how tail latencies reduces
during midday. The results reported in this section confirm
those presented in Section 6.1, where cons poorly behaves
in presence of low query arrival rates. Indeed, cons requires
a careful parameter tuning, and a static parameter setting
cannot efficiently cope with query arrivals rate that widely
varies throughout the day.

Regarding time conservative PESOS, we can observe in
Figure 4 that the 500 ms tail latency requirement is success-
fully met, with very few violations. Similarly, the time conser-
vative configuration is able to meet the 1,000 ms tail latency
requirement, remaining well below the required threshold.
Relatively to our first research question (RQ1), we conclude
that PESOS can successfully meet the required tail latency
when the time conservative configuration is applied, even for
a realistic query workload. At the same time, PESOS shows
significant energy savings with respect to perf, as reported in
Table 4. In fact, with a 500 ms tail latency requirement, time
conservative PESOS reduces the CPU energy consumption by
∼24%, and by ∼44% when we impose a 1,000 ms tail latency

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

200

400

600

800

1000

1200

1400

95
th

-t
ile

re
sp

on
se

ti
m

e
(m

s)

perf

power

cons

PESOS TC (τ = 500 ms)

PESOS EC (τ = 500 ms)

PESOS TC (τ = 1000 ms)

PESOS EC (τ = 1000 ms)

Fig. 4. Tail latencies during a day, aggregated every 5 minutes.

requirement. As shown in Figure 6, such energy savings are
present during the whole day, up to ∼30% under the 500
ms tail latency requirement, and ∼50% for the 1,000 ms tail
latency requirement. These energy savings are possible thanks
to the application-level information exploited by the PESOS
algorithm, such as the states of the query queues and the
query efficiency predictions. Also, an important role is played

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

by the τ parameter, which permits to set the required tail
latency. As we can see from Figure 5 (right), this information
permits PESOS to select lower core frequencies more often
than power, which takes its frequency scaling decision relying
only on the CPU cores utilizations. High core frequencies
are selected by time conservative PESOS only in limited
cases during midday, when the query load is more intense.
Relatively to our second research question (RQ2), we can then
conclude that PESOS successfully reduces the CPU energy
consumption of a query processing nodes, providing much
higher energy savings than the power. At the same time,
PESOS provides energy savings comparable to those produce
by cons, while incurring in many less latency violations.

We now analyze the results for PESOS in its energy con-
servative configuration. As shown in Figure 4, energy conser-
vative PESOS does not satisfy the tail latency requirements.
However, we notice that the tail latency of energy conservative
PESOS approaches the 500 ms requirement during midday,
when the query load is more intense and the query queues
are populated with an higher number of queries than in other
periods of the day. In the PESOS algorithm, this results in
critical intervals of high intensity (see Alg. 4) which lead PE-
SOS to select higher core frequencies, hence reducing the tail
latency of the system. We can observe the same effects when
we impose a 1,000 ms tail latency requirement. In this case,
the energy conservative configuration violates the requirement
at the beginning and at the end of the day, when the query
workload is not intense. On the contrary, the 1,000 ms tail
latency requirement is met during midday in correspondence
of an high query arrival rate. While violating the tail latency
requirements, the energy conservative configurations provides
the highest energy savings as reported in Table 4. When we
impose a tail latency requirement of 500 ms, energy conserva-
tive PESOS reduces the CPU energy consumption by almost
33% compared to perf. The energy savings reach ∼48% when
the tail latency requirement is set to 1,000 ms. Such savings
are present during the whole day, as illustrated in Figure 6,
up to ∼40% under the 500 ms tail latency requirement, and
∼60% for the 1,000 ms tail latency requirement. Interestingly,
we notice a larger energy saving gap between time conserva-
tive and energy conservative PESOS when τ = 500 ms than
when τ = 1, 000 ms. This is particular evident in Figure 6,
where the curves relative to the two configurations almost
coincides. This is surprising, as time conservative PESOS is
likely to over estimate the processing volumes and times for
some queries, selecting higher core frequencies and consuming
more energy. However, this behavior can be due to the longer
time budgets available to process queries under the 1,000
ms latency constraint, which still permits time conservative
PESOS to select lower core frequencies to process queries.
Regarding our third research question (RQ3), we can then
conclude that predictors correction is necessary to meet the
required tail latencies and overall time conservative PESOS is
a better choice when processing a realistic query workload.

7 Related Work
While Web search engines can consume tens of megawatts
of electric power to operate [1], there is only a limited body
of research that aims to reduce the energy expenditure of
Web search engines. These works can be divided in three

TABLE 4
CPU energy consumption (KJ) of the power management approaches

for processing a day of query log, and the gain w.r.t. perf

Energy (KJ) Gain (%)

perf 790.40 –
power 759.42 -3.92%
cons 575.49 -27.19%
PESOS (TC, τ = 500 ms) 601.67 -23.88%
PESOS (EC, τ = 500 ms) 531.10 -32.81%
PESOS (TC, τ = 1, 000 ms) 443.73 -43.86%
PESOS (EC, τ = 1, 000 ms) 412.06 -47.87%

categories which focus on different level of a Web search
engine architecture: 1) geographically distributed datacenters,
2) processing clusters within a datacenter, and 3) a single
query processing node.

The works in [38], [39], [40] focus on multi-site Web
search engines, i.e., search engines composed by multiple and
geographically distant datacenters. These studies propose to
use query forwarding, i.e., to shift the query workload between
datacenters. Kayaaslan et al. [38] consider a scenario where
datacenters hold the same replica of the inverted index. They
propose to use query forwarding to exploit the difference in
energy price at different sites, due to the different datacenter
locations and timezones. In this way, they aim to minimize the
energy expenditure of the search engine. At the same time, the
approach ensures that the remote sites can process forwarded
queries without exceeding their processing capacity. Blanco
et al. [39] extend this idea by forwarding queries towards
datacenters that can use renewable energy sources that are
both environmentally friendly and economically convenient.
Teymorian et al. [40], instead, consider a scenario where each
site hold a different inverted index. In their approach, the
authors use query forwarding to maximize the quality of
search results, collecting relevant document from the different
sites, while satisfying energy cost budget constraints. Query
forwarding techniques may be applied in conjunction with
PESOS to deploy more energy-efficient architectures.

The works in [15], [41], [42] focus on reducing the energy
consumption of query processing node clusters within a single
datacenter. Sazoglu et al. [41] investigate the role of result
caching in the energy expenditure of search engines. They
present a financial cost metric to measure the price of cache
misses and find that cost-aware caching strategies can reduce
the energy expenditure of a datacenter when there is an high
variation of energy prices during the day. Freire et al. [42]
propose a self-adaptive model that exploits the historical and
current query loads of the system. The model autonomously
decide whether to activate a query processing node, to provide
acceptable query response times, or put it in standby to save
energy. Lo et al. [15], instead, introduce a feedback-based
model that dynamically cap the power consumption of query
processing nodes CPUs. Their approach trades off power
savings for longer latencies that barely meet the response
time requirements under any query workload. We believe that
PESOS can be used together with the techniques described
in [41], [42] to improve the energy efficiency of a Web search
engine. On the contrary, the integration of PESOS with the
approach proposed in [15] needs to be investigated, since both
techniques require to control the CPU power management.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.1

2.3

2.5

2.7

2.9

3.1

3.3

3.5
C

P
U

F
re

qu
en

cy
(G

H
z)

1

2

4

11

24

54

121

270

601

1339

2980

power

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.1

2.3

2.5

2.7

2.9

3.1

3.3

3.5

C
P

U
F

re
qu

en
cy

(G
H

z)

1

2

4

11

24

54

121

270

601

1339

2980

cons

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.1

2.3

2.5

2.7

2.9

3.1

3.3

3.5

C
P

U
F

re
qu

en
cy

(G
H

z)

1

2

4

11

24

54

121

270

601

1339

2980

PESOS
Fig. 5. Number of times power (left), cons (middle) and time-conservative (τ = 500 ms) PESOS (right) select frequencies on one of the CPU
cores during the day, sampled every second.

00 02 04 06 08 10 12 14 16 18 20 22
Hour of day (hh)

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

power

cons

PESOS TC (τ = 500 ms)

PESOS EC (τ = 500 ms)

PESOS TC (τ = 1000 ms)

PESOS EC (τ = 1000 ms)

Fig. 6. CPU energy reductions of power and PESOS w.r.t perf, aggre-
gated every 5 minutes.

Finally, the works in [13], [43] focus on reducing the energy
consumption of a single query node. Catena et al. [13] propose
to use the query processing node utilization, rather than the
CPU utilization, to accordingly throttle the CPU frequency
and reduce the power consumption of the node. Du et. al [43],
propose an approach to improve the energy efficiency of a
query node by equally distribute queries and power among the
CPU cores. However, their work contemplates the early ter-
mination of query processing, possibly degrading the quality
of the search results. In our work, instead, queries are always
completely processed, even if this may delay the execution of
other queries. Also, the approaches in [13], [43] do not consider
the characteristics of the incoming queries, i.e., differently
from PESOS, no form of query efficiency prediction is applied
to achieve energy savings.

8 Conclusions
In this paper we proposed the Predictive Energy Saving
Online Scheduling (PESOS) algorithm. In the context of
Web search engines, PESOS aims to reduce the CPU en-
ergy consumption of a query processing node while imposing
a required tail latency on the query response times. For
each query, PESOS selects the lowest possible CPU core
frequency such that the energy consumption is reduced and

the deadlines are respected. PESOS selects the right CPU core
frequency exploiting two different kinds of query efficiency
predictors (QEPs). The first QEP estimates the processing
volume of queries. The second QEP estimates the query
processing times under different core frequencies, given the
number of postings to score. Since QEPs can be inaccurate,
during their training we recorded the root mean square error
(RMSE) of the predictions. In this work, we proposed to sum
the RMSE to the actual predictions to compensate prediction
errors. We then defined two possible configuration for PESOS:
time conservative, where prediction correction is enforced, and
energy conservative, where QEPs are left unmodified.

We experimentally evaluated the performance of PESOS
using the ClueWeb09B corpus and processing queries from
the MSN2006 log applying two different dynamic pruning
retrieval strategies: MaxScore and WAND. We compared the
performance of PESOS with those of three baselines: perf,
which always uses the maximum CPU core frequency, power,
which throttles frequencies according to the core utilizations,
and cons, which throttles frequencies according to the utiliza-
tion of the query servers. We found that time conservative PE-
SOS was able to meet a required tail latency of 500 and 1,000
ms for the same workload sustainable by perf. At the same
time, time conservative PESOS was able to reduce the CPU
energy consumption of the CPU by ∼12% with WAND up to
∼25% with MaxScore, for which we could train more accurate
query efficiency predictors than for WAND. Greater energy
savings were observable with energy conservative PESOS, but
at the cost of higher latencies. Predictors correction is hence
necessary to obtain the required tail latency, still providing
significant energy savings. Moreover, we processed a realistic
query workload which reflects the query arrivals of one day
of the MSN2006 log. We found that time conservative PESOS
was able to meet a 500 ms (with very few violations) and a
1,000 ms tail latency requirements, while reducing the CPU
energy consumption, respectively, by ∼24% and by ∼44%
when compared to perf. From the same set of experiments, we
reported that power can reduce the CPU energy consumption
by just ∼4% with respect to perf. On the other hand, cons
was able to reduce the CPU energy consumption by∼27% but
incurring in considerable latency violations. We justified the
superior perf provided by PESOS thanks to the application-
level information exploited by our algorithm, such as the
knowledge about the state of the query queues and the query
efficiency predictions.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2681279, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

References
[1] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a

Computer: An Introduction to the Design of Warehouse-Scale
Machines, 2nd ed. Morgan & Claypool Publishers, 2013.

[2] I. Arapakis, X. Bai, and B. B. Cambazoglu, “Impact of response
latency on user behavior in web search,” in Proc. SIGIR, 2014,
pp. 103–112.

[3] U.S. Department of Energy, “Quick start guide to increase
data center energy efficiency,” 2009. [Online]. Available:
http://goo.gl/ovDP26

[4] The Climate Group for the Global e-Sustainability Initiative,
“Smart 2020: Enabling the low carbon economy in the
information age,” 2008. [Online]. Available: http://goo.gl/
w5gMXa

[5] European Commission - Joint Research Centre, “The European
Code of Conduct for Energy Efficiency in Data Centre.” [Online].
Available: http://goo.gl/wmqYLQ

[6] U.S. Department of Energy, “Best Practices Guide for
Energy-Efficient Data Center Design.” [Online]. Available:
http://goo.gl/pikFFv

[7] D. C. Snowdon, S. Ruocco, and G. Heiser, “Power Management
and Dynamic Voltage Scaling: Myths and Facts,” in Proc. of
Workshop on Power Aware Real-time Computing, 2005.

[8] The Linux Kernel Archives, “Intel P-State driver.” [Online].
Available: https://goo.gl/w9JyBa

[9] D. Brodowski, “CPU frequency and voltage scaling code in the
Linux kernel.” [Online]. Available: https://goo.gl/QSkft2

[10] C. Macdonald, N. Tonellotto, and I. Ounis, “Learning to predict
response times for online query scheduling,” in Proc. SIGIR,
2012, pp. 621–630.

[11] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L. Cox,
and S. Rixner, “Predictive parallelization: Taming tail latencies
in web search,” in Proc. SIGIR, 2014, pp. 253–262.

[12] S. Kim, Y. He, S.-w. Hwang, S. Elnikety, and S. Choi, “Delayed-
dynamic-selective (dds) prediction for reducing extreme tail
latency in web search,” in Proc. WSDM, 2015, pp. 7–16.

[13] M. Catena, C. Macdonald, and N. Tonellotto, “Load-sensitive
cpu power management for web search engines,” in Proc. SIGIR,
2015, pp. 751–754.

[14] V. Pallipadi, S. Li, and A. Belay, “cpuidle: Do nothing, effi-
ciently,” in Proc. Linux Symposium, vol. 2, 2007, pp. 119–125.

[15] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis, “Towards energy proportionality for large-scale
latency-critical workloads,” in Proc. ISCA, 2014, pp. 301–312.

[16] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch, “Power management of online data-intensive services,”
in Proc. ISCA, 2011, pp. 319–330.

[17] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to
Information Retrieval. Cambridge University Press, 2008.

[18] M. Catena, C. Macdonald, and I. Ounis, “On inverted index
compression for search engine efficiency,” in Proc. ECIR, 2014,
pp. 359–371.

[19] J. Dean, “Challenges in building large-scale information retrieval
systems: Invited talk,” in Proc. WSDM, 2009.

[20] S. Robertson and H. Zaragoza, “The Probabilistic Relevance
Framework: BM25 and Beyond,” Found. Trends Inf. Retr.,
vol. 3, no. 4, pp. 333–389, Apr. 2009.

[21] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien,
“Efficient query evaluation using a two-level retrieval process,”
in Proc. CIKM, 2003, pp. 426–434.

[22] H. Turtle and J. Flood, “Query evaluation: Strategies and opti-
mizations,” Inf. Process. Manage., vol. 31, no. 6, pp. 831–850,
Nov. 1995.

[23] H. Wu and H. Fang, “Analytical performance modeling for top-k
query processing,” in Proc. CIKM, 2014, pp. 1619–1628.

[24] A. Freire, C. Macdonald, N. Tonellotto, I. Ounis, and
F. Cacheda, “Hybrid query scheduling for a replicated search
engine,” in Proc. ECIR, 2013, pp. 435–446.

[25] S. Albers, F. Müller, and S. Schmelzer, “Speed scaling on parallel
processors,” in Proc. SPAA, 2007, pp. 289–298.

[26] F. Yao, A. Demers, and S. Shenker, “A scheduling model for
reduced cpu energy,” in Proc. FOCS, 1995, pp. 374–382.

[27] N. Bansal, T. Kimbrel, and K. Pruhs, “Speed scaling to manage
energy and temperature,” J. ACM, vol. 54, no. 1, pp. 3:1–3:39,
Mar. 2007.

[28] S. Albers, “Online scheduling,” Introduction to Scheduling, pp.
57–84, 2009.

[29] C. Macdonald, R. McCreadie, R. L. Santos, and I. Ounis, “From
puppy to maturity: Experiences in developing terrier,” Open
Source Information Retrieval, vol. 60, 2012.

[30] S. Vigna, “Quasi-succinct indices,” in Proc. WSDM, 2013, pp.
83–92.

[31] M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and
J. Y. Zien, “Evaluation strategies for top-k queries over memory-
resident inverted indexes,” PVLDB, vol. 4, no. 12, pp. 1213–
1224, 2011.

[32] G. Ottaviano, N. Tonellotto, and R. Venturini, “Optimal space-
time tradeoffs for inverted indexes,” in Proc. WSDM, 2015, pp.
47–56.

[33] C. Dimopoulos, S. Nepomnyachiy, and T. Suel, “Optimizing top-
k document retrieval strategies for block-max indexes,” in Proc.
WSDM, Rome, Italy, 2013, pp. 113–122.

[34] J. Dean and L. A. Barroso, “The tail at scale,” Communications
of the ACM, vol. 56, no. 2, pp. 74–80, 2013.

[35] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart,
and R. Geyer, “An energy efficiency feature survey of the intel
haswell processor,” in Proc. IPDPSW, 2015, pp. 896–904.

[36] D. De Sensi, “Predicting performance and power consumption of
parallel applications,” in Proc. PDP, 2016, pp. 200–207.

[37] M. Danelutto, D. De Sensi, and M. Torquati, “Energy driven
adaptivity in stream parallel computations,” in Proc. PDP, 2015,
pp. 103–110.

[38] E. Kayaaslan, B. B. Cambazoglu, R. Blanco, F. P. Junqueira,
and C. Aykanat, “Energy-price-driven query processing in multi-
center web search engines,” in Proc. SIGIR, 2011, pp. 983–992.

[39] R. Blanco, M. Catena, and N. Tonellotto, “Exploiting green
energy to reduce the operational costs of multi-center web search
engines,” in Proc. WWW, 2016, pp. 1237–1247.

[40] A. Teymorian, O. Frieder, and M. A. Maloof, “Rank-energy
selective query forwarding for distributed search systems,” in
Proc. CIKM, 2013, pp. 389–398.

[41] F. B. Sazoglu, B. B. Cambazoglu, R. Ozcan, I. S. Altingovde,
and O. Ulusoy, “A financial cost metric for result caching,” in
Proc. SIGIR, 2013, pp. 873–876.

[42] A. Freire, C. Macdonald, N. Tonellotto, I. Ounis, and
F. Cacheda, “A self-adapting latency/power tradeoff model for
replicated search engines,” in Proc. WSDM, 2014, pp. 13–22.

[43] Z. Du, H. Sun, Y. He, Y. He, D. A. Bader, and H. Zhang,
“Energy-efficient scheduling for best-effort interactive services to
achieve high response quality,” in Proc. IPDPS, 2013, pp. 637–
648.

Matteo Catena received the BS and MS de-
grees in Computer Science from the University
of L’Aquila in 2010 and 2013, respectively. He is
now a PhD student at the Gran Sasso Science
Institute and a research associate at ISTI-CNR.
His main research interests include Web informa-
tion retrieval, Green computing and compression
algorithms.

Nicola Tonellotto received the PhD degrees in
Computer Engineering from the University of
Pisa and the Technical University of Dortmund
in 2008. He is a researcher at National Research
Council of Italy. His main research interests in-
clude cloud computing, resource management
and Web information retrieval. He has authored
more than 50 papers on these topics in peer
reviewed international journal and conferences.
He is a member of the ACM and SIGIR.

http://goo.gl/ovDP26
http://goo.gl/w5gMXa
http://goo.gl/w5gMXa
http://goo.gl/wmqYLQ
http://goo.gl/pikFFv
https://goo.gl/w9JyBa
https://goo.gl/QSkft2

